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Abstract. The perturbed sine–Gordon soliton solutions (kinks, breathers) in laboratory
coordinates are derived by a Green function formalism in a novel way dispensing with any
inverse scattering methods. Besides the Bäcklund transformation, a simple approach based on
Green’s theorem is employed for determining the Green functions. A systematic treatment
allows the adiabatic approximation to be derived in a new manner. The results are compared
to those of the relevant papers in this field and thereby further insight is provided. In a simple
example (a kink scattered by an impurity) the calculation of energy radiation is demonstrated.

1. Introduction

The nonlinear partial differential equation named the sine–Gordon equation is one of the
most familiar soliton equations. Its simplest solutions, the one-soliton (kink) and the two-
soliton (breather) solutions, play an important role in many fields of physics. In applications,
the influence of various perturbations on the soliton behaviour is of particular interest.

The history of the activities in the field of perturbed soliton equations is more than
40 years old. In 1951 Seeger and Kochendörfer [1] investigated the influence of weak
perturbations on the kink solution of the sine–Gordon equation. Their approach has recently
been reformulated in terms of the Bäcklund transformation [2]. Later powerful methods
were developed that are based, to a varying extent, on inverse scattering theory [3]. In
particular, the pioneering works by McLaughlin and Scott [4], Kaup and Newell [5], and
Karpmanet al [6, 7] are to be noted. Although a strong mathematical tool, inverse scattering
theory is rather involved and not easily accessible. Therefore, also other more familiar and
simple methods have been looked for. There are some papers dealing with perturbed single
solitons, for example [8–10], that do not use inverse scattering methods, but here special
assumptions have been made and no general solutions could be given.

It has been our objective, in continuing the early work of Seegeret al [1, 11]
(cf also [12]) to find general methods that do not need the knowledge and the use of
inverse scattering theory; rather we searched for methods that are based on the use of the
Bäcklund transformation and are suited to the treatment of perturbed single-soliton as well
as multi-soliton solutions of the sine–Gordon equation. Such methods have been given for
the perturbed kink solutions [2] and also for the perturbed breather solutions [13, 14]. These
methods have in common that first the fundamental solutions of the homogeneous, in the
neighbourhood of the unperturbed soliton solution linearized, sine–Gordon equation have to
be found, which is achieved by means of the Bäcklund transformation. The main problem
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is the determination of the coefficients of an expansion of the perturbed solution in terms of
these basis functions. To this end an appropriate equation, called the key equation, has to be
found, which is accomplished very easily in the one-soliton case by a simple combination
of Bäcklund transformations. In the two-soliton case, however, the key equation becomes
much more complicated and may only be obtained by a rather intricate combination of
several B̈acklund transformations.

In the present paper a new method is presented that rests on the use of Green’s theorem.
It allows the above-mentioned coefficients to be determined in a direct way and is, for the
two-soliton case, not much more complicated than that for the one-soliton case. Moreover,
it is equally well applicable to other perturbed soliton equations, for example the perturbed
Korteweg–deVries equation [15]. It seems to us that this method is able to compete with
the existing methods depending on the use of inverse scattering theory (compare also with
[16–20]) but has the advantage of being more direct and simple.

In the following the general problem is outlined and the formal first-order solution is
given in terms of a Green function. In particular, arbitrary initial conditions are allowed
for (section 2). In section 3 the basis functions for an expansion of the perturbed solution
are determined. This requires the consideration of the Bäcklund transformations for both
kinks and breathers. The expansion coefficients are specified from conditions on the Green
function by means of Green’s theorem (section 4). In section 5 the pure first-order result is
improved in the sense of the adiabatic approximation, whereby possible secular terms are
eliminated. In an application to a simple example it is shown how the perturbed solution
can be utilized to calculate the radiated energy (section 6). The results are compared with
corresponding expressions in the literature and some new conclusions are drawn (section 7).

2. General formulation

The normalized sine–Gordon equation with a perturbation termεF (x, t), |ε| � 1, is defined
as

utt − uxx + sinu = εF. (2.1)

An unperturbed soliton solution, for example, a kink or a breather, is denoted byus(x, t).
In a first-order approximation we assume that the perturbed solution may be written as

u = us + εv (2.2)

whereεv(x, t) denotes the deviation from the unperturbed soliton solution. Inserting (2.2)
into (2.1) and retaining only the terms linear inε gives

Lv ≡ vtt − vxx + (cosus)v = F (2.3)

where we have introduced the linear operatorL.
The inhomogeneous linear partial differential equation (2.3) is formally solved by a

Green functionG(x, t; x ′, t ′) defined by

LG ≡ Gtt −Gxx + (cosus)G = δ(x − x ′)δ(t − t ′). (2.4)

In terms ofG a particular solutionv of equation (2.3) may be expressed as

v =
∫ ∞

0
dt ′
∫ +∞
−∞

dx ′G(x, t; x ′, t ′)F (x ′, t ′). (2.5)

By forming Lv this solution is verified at once.
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Because of the causality condition [21],G(x, t; x ′, t ′) should be zero fort < t ′, which
is achieved by the ansatz

G(x, t; x ′, t ′) = G0(x, t; x ′, t ′)H(t − t ′) (2.6)

whereH(τ) designates the step function:H(τ) = 1 for τ > 0, H(τ) = 0 for τ < 0. The
solution (2.5) then becomes

v =
∫ t

0
dt ′
∫ +∞
−∞

dx ′G0(x, t; x ′, t ′)F (x ′, t ′) ≡ v1(x, t). (2.7)

The functionG0 is chosen to be a solution of the homogeneous equation

LG0 = 0. (2.8a)

In order that the solutionv given in (2.7) fulfills equation (2.3), the Green functionG0 has
to satisfy the following conditions:

G0(x, t; x ′, t ′)|t=t ′ = 0 G0
t (x, t; x ′, t ′)|t=t ′ = δ(x − x ′). (2.8b)

Equations (2.8a) and (2.8b) describe an initial-value problem for the Green functionG0.
OnceG0 is determined, the solutionv follows by quadratures.

The particular solutionv = v1 of (2.7) satisfies the initial conditionsv1 = v1t = 0 for
t = 0. If we are looking for a solution satisfying the initial conditionsv(x, 0) = f (x),
vt (x, 0) = g(x), we have to add a solutionv0 of the homogeneous equation

v(x, t) = v0(x, t)+ v1(x, t) (2.9)

where

Lv0 = 0 v0(x, 0) = f (x) v0t (x, 0) = g(x) (2.10)

defines the initial-value problem forv0. In simple casesv0 may be found directly from
(2.10). On the other hand,v0 may be expressed in terms of the Green functionG0. This
is done in section 4, equation (4.11), after the general properties of the Green functionG0

have been established.

3. Solution of the homogeneous equation

In order to solve the initial-value problem (2.8) for the Green functionG0, we first have to
find the general solution of the homogeneous equation

Lϕ ≡ ϕtt − ϕxx + (cosus)ϕ = 0. (3.1)

This equation results from the unperturbed sine–Gordon equation

utt − uxx + sinu = 0 (3.2)

by a variation ofu in the neighbourhood of the soliton solutionus . So one may either
solve (3.1) directly or find the general solution of (3.2) in the neighbourhood ofus and then
differentiate with respect to the parameterspi (which may be discrete or continuous)

ϕi = (∂u/∂pi)|u=us . (3.3)

The first procedure is possible for the one-soliton (kink) solution only; for the second
procedure, which applies to all soliton solutions, we have to employ the Bäcklund
transformation.
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3.1. One-soliton (kink) case

The (positive) kink solution of (3.2) is written as

us = uk = 4 arctan exp̄x x̄ = x − sinσ · t − x0

cosσ
(3.4)

whereσ andx0 are two parameters. In the literature the velocity parameterV is frequently
introduced: sinσ = V, cosσ = (1 − V 2)1/2. The function cosus in the homogeneous
equation (3.1) becomes

cosuk = 1− 2 sech2 x̄. (3.5)

Since the sine–Gordon equation is Lorentz invariant, the Lorentz transformation

x̄ = x − x0− sinσ · t
cosσ

t̄ = t − sinσ(x − x0)

cosσ
(3.6)

in (3.1) leads to

ϕt̄t̄ − ϕx̄x̄ + (1− 2 sech2 x̄)ϕ = 0. (3.7)

This equation admits a continuous solution with the parameterk̄ (1+ k̄2 = ω̄2) and two
discrete solutions which, according to (3.3), are also obtained by differentiating the function
uk, (3.4), with respect to the two parametersσ andx0 [2].

The general solution of (3.1) for the kink soliton then becomes

ϕ = A1 sechx̄ + A2t̄ sechx̄ +
∫ +∞
−∞

dk̄(tanhx̄ − ik̄)[Ā(k̄)ei(k̄x̄+ω̄t̄) + B̄(k̄)ei(k̄x̄−ω̄t̄)] (3.8)

or, if we return in the exponents tox, t-coordinates by defining(ω = +√1+ k2)

k̄x̄ + ω̄t̄ = k(x − x0)+ ωt : k̄ = k + ω sinσ

cosσ
ω̄ = ω + k sinσ

cosσ
(3.9)

ϕ = (A1+ A2t̄ ) sechx̄ +
∫ +∞
−∞

dk

[
A(k)

{
tanhx̄ − ik̄

iω̄
ei(kx+ωt)

}
+ B(k){−ω}

]
(3.10)

where the symbol{−ω} denotes that in the foregoing expressionω is to be replaced by−ω,
and where the constantsA andB have been introduced in the way as done for reasons to
be seen later.

3.2. Two-soliton (breather) case. B¨acklund transformations

The so-called breather solution of (3.2) may be written as

us = ub = −4 arctan

{
1

sinhσ

sin(tanhσ · t + c2)

cosh(sechσ · x + c1)

}
(3.11)

the minus sign has been chosen to be in accordance with the subsequent Bäcklund
transformations. There are three parametersσ, c1 and c2. In the literature sometimes
tanhσ = cosµ, sechσ = sinµ, cschσ = tanµ is written. For brevity, we shall
occasionally write tanhσ = β, sechσ = α, cschσ = γ ; γ = αβ−1, α2 + β2 = 1. The
function (3.11) represents a breather whose centre is at rest. A running breather is formally
obtained by a Lorentz transformation

x = (x̃ − ct̃)(1− c2)−1/2 t = (t̃ − cx̃)(1− c2)−1/2. (3.12)

The constantc is the fourth parameter that defines the most general breather.



Systematic perturbation theory for sine–Gordon solitons 1231

We wish to solve the homogeneous equation (3.1) with

cosub = 1− 8γ−2N−2 cosh2 αx sin2 βt N = γ−2 cosh2 αx + sin2 βt (3.13)

where we have specified the breather (3.11) by assumingc1 = c2 = 0. For this task
we utilize the B̈acklund transformation. Since there have been many presentations, for
example, [4, 11–13, 22, 23], we confine ourselves to the relevant expressions. In terms of
characteristic coordinatesp = (x − t)/2 andq = (x + t)/2, the B̈acklund transformation

∂p(ui − u0)/2= λi sin[(ui + u0)/2] ∂q(ui + u0)/2= λ−1
i sin[(ui − u0)/2] (3.14)

describes the production of a new solutionui from a given solutionu0 of the sine–Gordon
equation (3.2). Foru0 = 0 and withλi = (1+ sinσi)/ cosσi , kink solutions corresponding
to (3.4) result, withx̄i = (x−sinσi ·t−xi)/ cosσi , where thexi denote integration constants.
For u0 6= 0, the solutionsui represent kinks superimposed onu0. Starting with the solution
u1, a second B̈acklund transformation with the parameterλ2 produces a second kink onu0.
By virtue of Bianchi’s theorem, this kink-pair solutionu12 is given in pure algebraic form

u12 = u0+ 4 arctan

{
cos1

2(σ1+ σ2)

sin 1
2(σ1− σ2)

tan
u1− u2

4

}
. (3.15)

For u0 = 0, σ1 = −σ2 = iσ, x1 = x2 = 0 the breather solution (3.11) withc1 = c2 = 0
results. Since for performing the differentiations in (3.3) it suffices to assume|u0| � 1 , the
corresponding solution of (3.2) is given byu0 = A(k) exp[i(kx+ωt)]+B(k) exp[i(kx−ωt)],
whereω = +√1+ k2. With this form for u0 the solutionsui of (3.14) are exactly those
given in (3.10) [2].

We are now in a position to derive all solutions of the homogeneous equation (3.1) with
(3.13) by means of (3.3) withu = u12. The discrete solutionsϕ1, ϕ2, ϕ3 andϕ4 are obtained
in a simpler way by differentiating the form (3.11) plus (3.12) with respect toc1, c2, c and
σ , respectively, and then settingc1 = c2 = c = 0. The continuous solutions follow from
(3.15) settingσ1 = −σ2 = iσ , x1 = x2 = 0 in advance andA = B = 0 after differentiating
with respect toA andB. After all, the most general solution of (3.1) in the breather case
may be written, with the abbreviationsξ = αx, η = βt,N = γ−2 cosh2 ξ + sin2 η,

ϕ(x, t) =
4∑

µ=1

Aµϕµ(x, t)+
∫ +∞
−∞

dk[A(k)φ(x, t; k, ω)+ B(k)φ(x, t; k,−ω)] (3.16)

where

ϕ1 = 1

N
sinhξ sinη ϕ3 = 1

N
[η sinhξ sinη − γ−2ξ coshξ cosη]

ϕ2 = 1

N
coshξ cosη ϕ4 = 1

N
[α−2 coshξ sinη − η coshξ cosη − γ−2ξ sinhξ sinη]

φ(x, t; k, ω) = ei(kx+ωt)
[

1+ 2(sin2 η − cosh2 ξ)+ i(α−1k sinh 2ξ + β−1ω sin 2η)

(1+ α−2k2)γ 2N

]
.

4. Determination of the Green functionG0

The Green functionG0 defined through the initial-value problem (2.8) may be expanded in
the complete basis derived in the last section:

G0(x, t; x ′, t ′) =
∑
i

Ai(x
′, t ′)ϕi(x, t). (4.1)
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The indexi runs over both discrete and continuous basis functions. Since orthogonality
relations between the functionsϕi are, in general, unknown (if one does not wish to borrow
from inverse scattering theory), we have to look for other methods in order to solve the
initial-value problem (2.8). One method has been reported in [2, 13, 14]. It consists of
finding special combinations ofϕ, as given by (3.10) or (3.16), and its derivatives in such
a way that the discrete parts disappear and the continuous parts appear as Fourier integrals.
This could be achieved by combining several Bäcklund transformations and was much more
complicated in the breather case than in the kink case. Here we shall present a new method
that is more general, simpler, and applicable to kinks and breathers in about the same way.

Led by Green’s theorem, which for the self-adjoint operatorL from (2.3) with any two
functionsu(x, t) andv(x, t) reads

uLv − vLu = ∂

∂t
(uvt − utv)− ∂

∂x
(uvx − uxv) (4.2)

we write the two conditions (2.8b) onG0 for t = t ′ as

0=
∑
i

Aiϕi(x, t
′) δ(x − x ′) =

∑
i

Aiϕit ′(x, t
′) (4.3)

multiply the second relation byϕ∗j (x, t
′), the first byϕ∗j t ′(x, t

′), subtract, integrate overx,
and obtain

ϕ∗j (x
′, t ′) =

∑
i

AiMij (t
′) Mij (t) =

∫ +∞
−∞

[ϕitϕ
∗
j − ϕiϕ∗j t ] dx. (4.4)

Employing Green’s theorem (4.2), withLϕi = 0, the elementsMij satisfy

d

dt
Mij (t) = [ϕixϕ

∗
j − ϕiϕ∗jx ]x=+∞ − [ϕixϕ

∗
j − ϕiϕ∗jx ]x=−∞. (4.5)

The right-hand side of (4.5) is easily evaluated. Ifi or j denotes a discrete basis
function, the right-hand side vanishes, andMij (t) is zero or a constant. The constant
elementsMij are simply calculated from the integral (4.4) by choosingt conveniently, for
example,t = 0. The only non-trivial elements arise for bothi and j denoting continuous
basis functions. For example, if we write in the kink case, in correspondence with (3.10),
G0 = A1ϕ1+A2ϕ2+

∫
dk[A(k)ϕ+k +B(k)ϕ−k ], then the element formed with the functions

ϕ+k andϕ+∗k′ takes, after a simplet integration, the form (when we omit terms which would
vanish with the subsequentk integration)

M++kk′ H⇒ lim
R→∞

h(k, k′)
sin(k − k′)R
k − k′ = h(k, k)πδ(k − k′) (4.6)

where h(k, k′) = 2i(ω + ω′)(1 + k̄k̄′)(ω̄ω̄′)−1 exp[i(ω − ω′)t ]. In the breather case the
procedure is quite similar. Because of theδ functions the system (4.4) becomes a finite
algebraic system and the coefficientsAi are expressed in the functionsϕ∗j (x

′, t ′) in a simple
way. The results are, in detail, as follows.

(1) Kink case.M21 = −M12 = 2,M++kk′ = −M−−kk′ = 4π iωδ(k− k′). All other elements
are zero. Solving the system (4.4), the Green function becomes

G0(x, t; x ′, t ′) = t̄ − t̄ ′
2 coshx̄ coshx̄ ′

+
∫ +∞
−∞

dk

[{
(tanhx̄ − ik̄)(tanhx̄ ′ + ik̄)

4π iωω̄2
eik(x−x ′)+iω(t−t ′)

}
+ {−ω}

]
. (4.7)
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(2) Breather case.M31 = −M13 = M42 = −M24 = γ = cschσ ;M++kk′ = −M−−kk′ =
4π iωδ(k − k′). All other elements are zero. With (4.4) and the notation (3.16), the Green
function becomes

G0(x, t; x ′, t ′) = − sinhσ [ϕ1ϕ
′
3− ϕ3ϕ

′
1+ ϕ2ϕ

′
4− ϕ4ϕ

′
2]

+ 1

4π i

∫ +∞
−∞

dk

ω
[φ(x, t; k, ω)φ∗(x ′, t ′; k, ω)

−φ(x, t; k,−ω)φ∗(x ′, t ′; k,−ω)]. (4.8)

The above formula applies to the breather whose centre is at rest. The Green function
for the running breather with coordinatesx̃ and t̃ is obtained by applying the Lorentz
transformation (3.12) to both the unprimed and primed coordinates. In doing so it is
implied that the elementsMij remain the same. Indeed, it can generally be shown that
∂Mij /∂c = 0 (see the appendix), so that the elementsMij are the same as in the casec = 0.
As to the continuous part ofG0, it may be appropriate also to transform the variablesk, ω:
k = r(k̃+ cω̃), ω = r(ω̃+ c k̃), with r = (1− c2)−1/2. Then, for example,kx+ωt becomes
k̃x̃ + ω̃t̃ and dk/ω is to be replaced by d̃k/ω̃.

With the determination ofG0 the problem of finding the solutionv = v1, (2.7), for
vanishing initial values is formally solved. In the case of non-zero initial values the
additional termv0 defined in (2.10) may be expressed in the basis functionsϕi , and the
initial-value problem (2.10) becomes

v0(x, t) =
∑
i

Ciϕi(x, t) f (x) =
∑
i

Ciϕi(x, 0) g(x) =
∑
i

Ciϕit (x, 0). (4.9)

A similar procedure as from (4.3) to (4.4) leads to∫ +∞
−∞

dx ′[g(x ′)ϕ∗j (x
′, 0)− f (x ′)ϕ∗j t ′(x ′, 0)] =

∑
i

CiMij (0). (4.10)

Since, as shown above, the relevant elementsMij are time-independent, we may manipulate
the system (4.4) in a way that the same left-hand side arises as in (4.10). By comparison,
it follows thatCi =

∫ +∞
−∞ dx ′[g(x ′)Ai(x ′, 0)− f (x ′)Ait ′(x ′, 0)] or, with (4.9) and (4.1),

v0(x, t) =
∫ +∞
−∞

dx ′[g(x ′)G0(x, t; x ′, 0)− f (x ′)G0
t ′(x, t; x ′, t ′)|t ′=0]. (4.11)

Another useful formulation in the case of non-zero initial values is the following. If
we write the total solutionv asv = a +w, wherea is any function that satisfies the initial
conditions, and apply the operatorL, Lw = Lv − La = F − La, thenw is given by the
Green function solution for vanishing initial values, and we have

v(x, t) = a(x, t)+
∫ t

0
dt ′
∫ +∞
−∞

dx ′G0(x, t; x ′, t ′)[F(x ′, t ′)− L′a(x ′, t ′)] (4.12)

whereL′ denotes the operatorL in x ′, t ′-coordinates.
The general solution (2.9),v = v0+ v1, given by (4.11) and (2.7), resembles the result

obtained by Riemann’s integration method [24, 14]. There are, however, some differences.
First, the Riemann functionR is defined in a way thatR = 2G0. Second, the integration
area forx ′, t ′ is confined to|x − x ′| 6 |t − t ′|, t ′ > 0. Indeed, it can be shown that
G0(x, t; x ′, t ′) = 0 for |x − x ′| > |t − t ′|. The integration area in (2.7) and (4.11) may,
therefore, be greatly reduced. Because of the discontinuities for|x−x ′| = |t− t ′|, however,
when confining oneself to the integration area|x−x ′| 6 |t−t ′|, the term1

2[f (x−t)+f (x+t)]
should be added to (2.9) (cf also [25]). In [14] it has been shown, independently of [26],
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that the Riemann function (and therefore, also the Green function) for the perturbed breather
problem may be represented in closed form, namely in terms of Lommel functions of two
variables. An analogous result holds for the perturbed kink problem, similarly as in [26].

5. Modified perturbation theory. Adiabatic approximation

It has earlier been pointed out [27, 4] that in the perturbed solutionv, (2.7), through the
integration of the discrete parts of the Green functions (4.7) and (4.8), there may arise
‘secular’, unphysical terms that grow linearly or even stronger with timet . This is a very
general aspect, not confined to soliton theory, and many methods have been developed in
order to remedy this unpleasant effect [28]. These methods imply that we have to give
up the exact first-order perturbation theory employed so far. We shall adopt the so-called
‘two-time-scale’ method similarly as in [27, 4]. It seems to us that our procedure of first
investigating the pure first-order approximation and then dealing with the modifications is
more systematic and evident. Our procedure for the perturbed sine–Gordon equation differs
from that of McLaughlin and Scott [4] mainly in that we do not consider a system of two
first-order differential equations in place of the familiar second-order differential equation.
Thus our treatment appears to be more direct and transparent and, as will be seen, permits
further insight.

It is physically obvious to assume that a soliton under a weak perturbation will primarily
keep its original form but that the parameters describing it will slowly change with time.
So we replace the ansatz (2.2) for the perturbed soliton solution by the new ansatz

u = ûs + εv̂ (5.1)

whereûs denotes the unperturbed soliton form with parameterspi depending on the ‘slow’
time τ = εt . For products with the ‘fast’ timet , P(pi)t , appearing inus we shall
write [27, 4]

∫ t
0 P [pi(εt ′)]dt ′. The dependencespi(τ ) will be determined later by proper

requirements. The termεv̂ stands for an additional first-order correction.
Inserting (5.1) into the perturbed sine–Gordon equation (2.1), we have to notice that

utt means total derivatives ofu(t, τ ) with respect tot , for instanceut = ∂u/∂t + ε∂u/∂τ .
Retaining only terms linear inε, we obtain

v̂t t − v̂xx + (cosûs)v̂ = F − F1 F1 = ∂2ûs

∂τ∂t
+ ∂2ûs

∂t∂τ
. (5.2)

The dependence of̂us on t and τ leads to a termF1 which may be considered as an
additional force in the linear equation for̂v (the two terms ofF1 are, in general, not
the same). If we requireu = us and ut = ust for t = 0, we have, from (5.1),
v̂(x, 0) = 0, v̂t (x, t)|t=0 = −∂ûs/∂τ |t=0 as initial conditions forv̂. Therefore, the solution
of (5.2) is, by means of (2.9), (2.7) and (4.11),

v̂ = −
∫ +∞
−∞

dx ′G0(x, t; x ′, 0)
∂û′s
∂τ ′

∣∣∣∣
t ′=0

+
∫ t

0
dt ′
∫ +∞
−∞

dx ′G0(x, t; x ′, t ′)(F ′ − F ′1) (5.3)

where the primes indicate primed coordinates. We have used here the same Green function
as before, which is exact only for constant parameters. Neglecting terms of higher order
in ε, however, we may adopt this approximation. Considering now the term∂2û′s/∂t

′∂τ ′

of F ′1, we can see that an integration by parts with respect tot ′ will compensate the first
integral of (5.3), and because ofG0(x, t; x ′, t) = 0, (2.8b), there remains

v̂ =
∫ t

0
dt ′
∫ +∞
−∞

dx ′
[
G0(x, t; x ′, t ′)

(
F ′ − ∂2û′s

∂τ ′∂t ′

)
+G0

t ′(x, t; x ′, t ′)
∂û′s
∂τ ′

]
. (5.4)
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As seen from (4.7) and (4.8), the Green functionG0 consists of a discrete part and a
continuous part,G0 = G0

d +G0
c. In order to avoid possible secular terms arising from the

discrete part, we now demand that the discrete part of (5.4) be zero:

v̂d ≡
∫ t

0
dt ′
∫ +∞
−∞

dx ′
[
G0

dF
′ −G0

d
∂2û′s
∂τ ′∂t ′

+G0
dt ′
∂û′s
∂τ ′

]
= 0. (5.5)

This condition determines the functionspi(τ ). SinceG0
d is of the form as shown in (4.8)

and the condition (5.5) should hold for allx and t , we obtain conditions valid for each
discrete independent functionϕµ(x, t)∫ +∞

−∞
dx

[
ϕµF − ϕµ ∂

2ûs

∂τ∂t
+ ϕµt ∂ûs

∂τ

]
= 0. (5.6)

Because of the above-mentioned approximate character ofG0, we may allow here the
parameters inϕµ also to modulate withτ , to be denoted aŝϕµ.

If the parameterspi depend not only onτ but also explicitly ont (which happens, e.g.,
in the breather case), i.e. both dpi/dt and d2pi/dt2 are of orderε, the last term ofF1 in (5.2)
is to be understood as the total derivative of∂ûs/∂τ , and the integration by parts following
(5.3) leads to the same results. Instead of dpi/dτ we then have to writeε−1dpi/dt .

To be specific, we consider the two soliton cases separately.
(1) Kink case.As an alternative form of (3.4) we have

ûk = 4 arctan exp̂x x̂ =
[
x −

∫ t

0
C(τ ′)dt ′ − x0(τ )

]
(1− C2(τ ))−1/2 (5.7)

with two parametersC(τ) andx0(τ ). As discrete basis functions we had foundϕ1 = sechx̄
andϕ2 = t̄ sechx̄ (x̄ results fromx̂ for ε = 0). The derivatives of̂uk may be expressed
in terms ofϕ̂1, ϕ̂2, ϕ̂1t and ϕ̂2t , and the sums of the second and third term of (5.6) become
proportional to the integral̂M21 =

∫ +∞
−∞ (ϕ̂1ϕ̂2t − ϕ̂1t ϕ̂2) dx = M21, whose value has already

been given ahead of (4.7). The following relations result

dC

dτ
= −1− C2

4

∫ +∞
−∞

dx sechx̂F (x̂)
dx0

dτ
= −C

√
1− C2

4

∫ +∞
−∞

dx x̂ sechx̂F (x̂).

(5.8)

These relations, also to be written with dx = √1− C2 dx̂, represent ordinary first-order
differential equations for the functionsC(τ) andx0(τ ). In order thatC andx0 depend, as
presupposed, onτ only, we had to assume thatF depends onx and t only throughx̂. In
caseF depends on̂x and t, C andx0 would become functions ofτ and t . The relations
(5.8) are in accordance with the results of McLaughlin and Scott [4]; Karpman and Solov’ev
[6] report the same first relation but another result for dx0/dτ .

(2) Breather case.We consider the general breather given by (3.11) with (3.12). For
typographical convenience, we shall writex, t instead ofx̃, t̃ . We allow again the parameters
c1, c2, c andσ to modulate withτ = εt and assume the modulated breather in the form

ûb(x, t, τ ) = −4 arctan(γ sinθ sechz) (5.9a)

z = αr(x − x1) x1 =
∫ t

0
c(t ′) dt ′ + x0 = T1+ x0 (5.9b)

θ = θ1− cγ−1z θ1 =
∫ t

0
β(t ′)r−1(t ′) dt ′ + θ0 = T2+ θ0 (5.9c)
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where r = (1− c2)−1/2. The parameters are nowpi = (x0, θ0, c, σ ). The discrete basis
functions ϕµ are obtained by differentiating the functionub, i.e. (5.9a) with T1 = ct ,
T2 = βr−1t , with respect topi . In order that we may utilize the relationships for the
elementsMij of the last section, we have to normalize the functionsϕµ such that they
coincide with the basis functions in (3.16) when the transformed coordinates (3.12) are
introduced. The modified functionŝϕµ are then given by writingT1 andT2 as in (5.9b, c).
The derivatives∂ûb/∂τ =

∑
i (∂ûb/∂pi)dpi/dτ in (5.6) are connected with thêϕµ in the

following way:

∂ûb/∂x0 = −4βr(ϕ̂1+ cγ−1ϕ̂2) ∂ûb/∂c = −4r(rϕ̂3− βc−1ϕ̂1T1)

∂ûb/∂θ0 = −4γ−1ϕ̂2 ∂ûb/∂σ = 4α(ϕ̂4+ ϕ̂2T2). (5.10)

For the differences∂2ûb/∂pi∂t − ∂2ûb/∂t∂pi one deduces(0, 0,−βcr∂ûb/∂θ0 +
∂ûb/∂x0, α

2r−1∂ûb/∂θ0) for pi = (x0, θ0, c, σ ), respectively. The system (5.6) then
assumes the form∫ +∞

−∞
ϕ̂µF dx = 4

4∑
ν=1

aν

∫ +∞
−∞

(ϕ̂νt ϕ̂µ − ϕ̂ν ϕ̂µt ) dx (5.11)

with a1 = βr(−◦x0 +c−1T1
◦
c), a2 = −γ−1(

◦
θ0 +βcr ◦x0 −αγT2

◦
σ), a3 = −r2◦c anda4 = α ◦σ ,

where◦ means d/dτ . The matrix elements on the right-hand side of (5.11),M̂νµ, are (as
shown in the appendix) independent ofc and are equal to those evaluated in the last section
for c = 0. The non-zero elements arêM31 = −M̂13 = M̂42 = −M̂24 = γ . For µ = 1 and

2, the relations for
◦
c and

◦
σ follow from (5.11) at once. Forµ = 3 and 4, (5.11) reduces to

the respective relations for
◦
x0 and

◦
θ0∫ +∞

−∞
(∂ûb/∂c, ∂ûb/∂σ )Fdx = 42α(−r3 ◦x0,

◦
θ0 +βcr ◦x0). (5.11a)

The parameterspi turn out to depend not only onτ but also ont . Then replacing d/dτ by
ε−1d/dt , we obtain the following final results,

dc

dt
= −ε

4
β−1r−3I1

dx1

dt
= c − ε

4
(αr)−2[γ cI3+ I4]

dσ

dt
= ε

4
(αβr)−1I2

dθ1

dt
= βr−1+ ε

4
(αr)−1[−r−2I3+ α−2γ cI4+ β−2I5] (5.12)

with

Iν =
∫ +∞
−∞

fν

C2+ γ 2s2
Fdz f1 = Ss f2 = Cc

f3 = zf1 f4 = zf2 f5 = Cs
where meanS = sinhz,C = coshz, s = sinθ, c = cosθ and, as before,α = sechσ, β =
tanhσ, γ = cschσ . The functionsc(t), σ (t), x1(t) andθ1(t) are obtained by integrating the
relations (5.12). Our results (5.12), when transformed into the language of Karpmanet al [7],
are in full agreement with their results obtained by inverse scattering methods. McLaughlin
and Scott [4] have not considered the general case but only the stationary breather (c = 0)
with F(x, t) even inx. Neither have they given explicit results in a general form, but if one
carries on their implicit formulation, one also arrives at the specialized results for dσ/dt
and dθ1/dt in (5.12). These special results have first been derived by Kosevich and Kivshar
[29] in a way similar to that of [7].

After having determined the time dependence of the parameterspj in ûs for both kinks
and breathers by demanding the discrete part of equation (5.4) to be zero, let us consider
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the remaining part formed with the continuous part of the Green function,G0
c. There arise

integrals like those in (5.6), but now the continuous functionsϕk appear instead ofϕµ. This
means that elementsMνk appear which, in the last section, have been shown to vanish. As
a result, the perturbed soliton solution (5.1) now takes the form

u = ûs + ε
∫ t

0
dt ′
∫ +∞
−∞

dx ′G0
c(x, t; x ′, t ′)F (x ′, t ′). (5.13)

Here ûs represents the so-called adiabatic approximation, that is the unperturbed soliton
form with time-dependent parameterspj . A first-order correction to this form is given
by the integral with the continuous part of the Green function. The fact that here only
the perturbationF appears, and not the ‘effective force’F − F1, has not been noted
by McLaughlin and Scott [4]. The adiabatic approximationûs represents a nonlinear
generalization of the former result (2.2) with the discrete part of (2.7). A linear expansion
of ûs in ε leads, indeed, tous plus the integral term formed with the discrete partG0

d of the
Green function.

A particular case that deserves our attention is a stationary breather (c = 0, and, e.g.,
c1 = c2 = 0) under a constant perturbationF = S. A static solution of the sine–Gordon
equation, originallyu = 0, is now u = arcsinεS ≈ εS. Since we are interested in a
perturbed solution that tends to the static solution at large distances from the centre of the
breather, we take as initial conditionsv(x, 0) = f (x) = S, vt (x, 0) = g(x) = 0. In this
case there are, as stated earlier [13], in principle two possibilities. This depends on whether
we adopt the representation as shown in (4.11) or in (4.12). The modified solution (5.1)
then becomes, in the first case,

u = ûb1−
∫ +∞
−∞

dx ′G0
t ′(x, t; x ′, 0)εS +

∫ t

0
dt ′
∫ +∞
−∞

dx ′G0
c(x, t; x ′, t ′)εS (5.14)

where in ûb = ûb1 the parameters are determined through (5.12) withF = S. The first
integral in (5.14) which represents the termv0 of (4.11) in the present special case, may be
evaluated in closed form, which is most easily done with the help of the aforementioned
key equation [13, 14]. The discrete part ofG0 does not contribute and the result is∫ +∞
−∞

dx ′G0
t ′(x, t; x ′, 0) =

(
1− 2(cosh2 z − sin2 θ)

cosh2 z + γ 2 sin2 θ

)
cost − β−1 sin 2θ

cosh2 z + γ 2 sin2 θ
sint.

(5.15)

Here an oscillating term arises for|z| → ∞ (which is compensated by the last term in
(5.14)). In the second case, witha = S andLa = S cosub, we obtain

u = ûb2+ εS +
∫ t

0
dt ′
∫ +∞
−∞

dx ′G0
c(x, t; x ′, t ′)εS(1− cosu′b). (5.16)

Here the parameters in̂ub = ûb2 are to be formed from (5.12) withF = S(1− cosub). As
a result, it appears that the second representation is to be preferred and thatûb2+ εS is the
appropriate adiabatic approximation. This contrasts with the presentation in [7].

6. Application: radiation of energy

A perturbed soliton keeps, in the sense of the adiabatic approximation, most of its properties;
nevertheless it gradually changes during the perturbation and loses energy. The radiation
of energy is determined through the second partευc of the perturbed solution (5.13). As
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an example, the energy radiation of a breather under a constant perturbing force has been
calculated within the present approach in [13, 14].

As another example we consider the interaction of a moving kink with a localized
perturbation [3]

εF = εδ(x) sinuk = εδ(x)(−2) tanhx̄ sechx̄ (6.1)

where the kink solutionuk is given in (3.4) and̄x reads in terms of the velocity parameter
V as x̄ = (x − V t − x0)(1− V 2)−1/2. The total energy of the system with the perturbed
solutionu is expressed through the Hamiltonian

H =
∫ +∞
−∞

[ 1
2(u

2
t + u2

x)+ (1− cosu)(1− εδ(x))] dx. (6.2)

The kink is assumed to start att = 0 from x = x0 < 0, |x0| � 1, and to move to
the right (V > 0) towards the local inhomogeneity atx = 0. We consider the situation at
large times(t � 1) after the kink has passed the impurity and all the radiation energy has
been emitted. (The adiabatic approximation (5.8) applied to this case yields, to the order
ε, no final change of the velocityV , only a phase shift1 = (ε/2)(1− V 2)/V 2, defined as
1 = ∫ t0 [V (τ ′)− V (0)]dt ′ + x0(τ )− x0(0) for t � 1.)

Outside of the kink region the perturbed solution isευ = ευc and, therefore, the total
emitted energy is derived from (6.2) to be (to the orderε2)

E = ε2

2

∫ +∞
−∞

(
υ2
t + υ2

x + υ2
)

dx. (6.3)

From (5.13) and (4.7), the solutionv with the perturbation (6.1) becomes

υ =
∫ +∞
−∞

dk
∫ t

0
dt ′
[(

tanhx̄ − ik̄
) (

tanhx̄ ′ + ik̄
)

4π i ω ω̄2
eikx+iω(t−t ′) + {−ω}

]
(−2)

tanhx̄ ′

coshx̄ ′
(6.4)

where now x̄ ′ = (−V t ′ − x0)(1 − V 2)−1/2, and k̄ and ω̄ are defined in (3.9). Thet ′

integration can be performed exactly. Also thex integration overυ2 = υυ∗ may be carried
out, observing that some terms vanish with the first subsequentk integration. Finally, one
obtains

E = ε2π

8V 6
(1− V 2)2

∫ +∞
−∞

dk[(ω + V k)2+ (ω − V k)2]sech2(πω
√

1− V 2/2V ). (6.5)

Considering the wave expressions from which the above contributions originate, one may
separate the total energy into two parts, corresponding to the energy radiated to the left (←)
and to the right (→), respectively,

E←→ =
ε2π

4V 6
(1− V 2)2

∫ ∞
0

dk(ω ± V k)2sech2(πω
√

1− V 2/2V ). (6.6)

As can be seen, most of the energy is radiated to the left (backwards), irrespective of the
sign of the impurity.

The total emitted energy (6.5) can be evaluated in closed form in two limiting cases:

|V | � 1: E = ε2
√

2π |V |−11/2 exp(−π/|V |) (6.7a)√
1− V 2� 1: E = ε2(2/3)

√
1− V 2. (6.7b)

These results agree with those of Kivshar and Malomed [3, 30], obtained by inverse
scattering methods.
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For a more general confined non-dissipative perturbationεF the radiated energyE from
a kink may be formulated as

E =
∫ +∞
−∞

dk

[
ε2|I (k)|2

8πω̄2
+ {−ω}

]
I (k) =

∫ ∞
0

dt
∫ +∞
−∞

dx(tanhx̄ + ik̄)e−i(kx+ωt)F (x, t) (6.8)

provided the time integral converges. This expression corresponds to that derived from
inverse scattering theory [3].

7. Summary and conclusion

The intention of the present paper has been to show that it is possible to establish a systematic
perturbation theory for sine–Gordon solitons without having to use or to borrow from inverse
scattering theory. Our treatment is based on a Green function formalism with special
attention to the initial-value problem. The basis functions for an expansion of the Green
function are constructed either directly or by utilizing the Bäcklund transformation. The
main problem, the determination of the Green functions, is solved by employing Green’s
theorem. This is, in this connection, a novel and rather general procedure and works equally
well for one-soliton and multi-soliton solutions. The present treatment also allows one to
reproduce the adiabatic approximation in a consistent way and to discuss and complement
the main papers in this field.

As compared to the papers of Karpman and Solov’ev ([6]), Kosevich and Kivshar ([29]),
Karpman, Maslov and Solov’ev ([7]) and McLaughlin and Scott ([4]), the present treatment
is complete in that it derives for both kinks and general breathers explicit expressions
for the first-order solutions as well as the adiabatic modulations of the parameters. As
distinguished from [4], we have considered the familiar second-order sine–Gordon equation
and not a system of two first-order differential equations, which obviously permits a clearer
representation. While [6], [29], and [7] take full account of inverse scattering theory, [4] use
such methods only for determining the Green functions, but their derivation ([4], appendix;
cf also Kaup [18]) appears to be much more involved than ours utilizing Green’s theorem
in a simple way. As opposed to [4], we could show that in the continuous part of the
perturbed solution only the true perturbation term enters and not an ‘effective force’.

Our results concerning the adiabatic approximation for perturbed kinks agree with those
of [4], but one relation differs from [6]. Unlike these investigations, Herman [19] studied
perturbed kinks in light-cone coordinates only. For the general breather we have obtained
full agreement with [7]; [4] and [29] have considered merely the stationary breather, but
only [29] have presented explicit relations. In the case of a constant perturbation we propose
another adiabatic approximation than that following from [7].

In an application to a simple example of a kink scattered by a local inhomogeneity we
have shown that the present theory is well suited to the calculation of the energy emission
from perturbed solitons.

In conclusion, it seems to us that the present approach is of a similar terseness and
efficiency as the treatments employing inverse scattering theory but is distinguished by its
relative simplicity and transparency.
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Appendix. Invariance of matrix elements Mij

It is to be shown that the elementsMij defined in section 4 are independent of the Lorentz
parameterc. We consider

Mij (t) =
∫ +∞
−∞

dx [ϕit (x̄, t̄ )ϕ
∗
j (x̄, t̄ )− ϕi(x̄, t̄)ϕ∗j t (x̄, t̄ )] (A1)

with x̄ = r(x − c t), t̄ = r(t − c x), r = (1 − c2)−1/2, and we form∂Mij /∂c. With
∂ϕ/∂c = −r2(t̄ϕx̄ + x̄ϕt̄ ) = −r2(tϕx + xϕt ) we get

∂

∂c
[ϕitϕ

∗
j − ϕiϕ∗j t ] = −r2

[
t
∂

∂x
(ϕitϕ

∗
j − ϕiϕ∗j t )+ ϕixϕ∗j − ϕiϕ∗jx + x(ϕittϕ∗j − ϕiϕ∗j tt )

]
.

An integration by parts gives with (3.1) the result

∂

∂c
Mij = −r2[t (ϕitϕ

∗
j − ϕiϕ∗j t )+ x(ϕixϕ∗j − ϕiϕ∗jx)]|x=+∞x=−∞. (A2)

This expression vanishes fori or j representing a discrete state. If bothi and j denote
continuous states,∂Mij /∂c becomes zero with the subsequentk integration indicated in the
first relation of (4.4).
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